Муниципальное казенное общеобразовательное учреждение «Солоновская средняя общеобразовательная школа» структурное подразделение Центр образования цифрового и гуманитарного профилей «Точка роста»

Новичихинского района Алтайского края

«Принято» На педагогическом совете Протокол от__30.08.22_____№14____ «УТВЕРЖДАЮ» директор МКОУ «Солоновская СОШ» В.В Тумакова

В.В Тумакова Приказ от.31/08/22№ 38/8 -ОД

Дополнительная общеобразовательная (общеразвивающая) программа технической направленности «Лига роботов »

Возраст учащихся:5-6класс Срок реализации: 2022-23 учебный год

Автор-составитель: Кадар В.П учитель информатики

Пояснительная записка

Данная рабочая программа регламентирует содержание и организацию процесса обучения по дополнительной программе и составлена на основе следующих нормативных документов :

- -Дополнительная общеобразовательная общеразвивающая программа МКОУ «Солоновская СОШ» Новичихинского района (утверждена Приказ № 19/5
- от «20» апреля 2021г) изменения приказ № 28/3-ОД от «26 » 08 2021г
- Календарный учебный график МКОУ «Солоновская СОШ " Новичихинского района на 2022-2023 уч.год (утвержден: Приказ от 31.08.2022г. № 38/9-ОД)
- Учебный план Центра дополнительного образования цифрового и гуманитарного профиля «Точка роста» МКОУ «Солоновская СОШ "Новичихинского района на 2021-2022 уч. год (утвержден: Приказ от 31.08.2021г. № 29-ОД)
- Положение о порядке разработки оформление и утверждения дополнительных общеобразовательных общеразвивающих программ утверждена Приказ № 28/ 2 ОД от 26.08.2021г

Мы живём в удивительное время, когда на наших глазах меняется представление о грамотности человека. Если 15 лет назад показателем грамотности служило умение читать и писать, а ещё недавно необходимой составляющей являлся навык работы с компьютером, то уже завтра каждый образованный человек должен будет уметь работать с роботами. Роботы постепенно, но уверенно входят в нашу жизнь. Они работают на производстве (например, в автомобильной промышленности), в сельском хозяйстве (автораздатчики кормов, автономные сборщики плодов), а также помогают людям в быту (например, робот-пылесос или кофеварочная машина).

Программы-роботы «беседуют» с человеком во многих CALL-центрах (финансовых организаций и «горячих линиях»), помогая выбрать нужный тариф или услугу, а в банке, МФЦ, ПФР или поликлинике робот следит за порядком в очереди.

Приобщая детей к управлению роботами, мы поможем им в будущем проще и быстрее освоить современные профессии, связанные с робототехникой; избежать проблем в обращении с современной техникой, расширить их кругозор и развить любознательность.

Актуальность программы

Программа соответствует действующим нормативным правовым актам и Концепции развития дополнительного образования в сфере технического творчества и направлена на формирование творческой личности, живущей в современном мире. Технологические наборы LEGO MINDSTORMS EV3 ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств. На занятиях используются конструкторы наборов ресурсного набора серии LEGO MINDSTORMS EV3.

Используя персональный компьютер или ноутбук с программным обеспечением, элементы из конструктора, ученики могут конструировать управляемые модели роботов. Загружая управляющую программу в специальный микрокомпьютер, и присоединяя его к модели робота, учащиеся изучают и наблюдают функциональные возможности различных моделей роботов. Робот работает независимо от настольного компьютера, на котором была написана

управляющая программа. Получая информацию от различных датчиков и обрабатывая ее, EV3 управляет работой моторов.

Современные дети и подростки фактически выросли в среде информационных технологий. Существенные изменения в технологиях, используемых в современной общеобразовательной школе, позитивно воспринимаются обучающимися, стимулируют их включаться более активно в учебный процесс.

Система дополнительного образования, поддерживая нововведения в сфере общего образования, активно и последовательно обращается к внедрению в обучении электронных информационных технологий. Более того, система дополнительно образования находит ресурсы для более широкого и разнообразного их использования не только в образовательновоспитательном процессе, но и в развитии творческой самореализации.

Новизна программы

Новизна программы и её педагогическая целесообразность обусловлены применением новых оригинальных образовательных технологий в робототехнике. В программе представлены современные идеи и актуальные направления развития науки и техники. Программа «Робототехника» формирует конвергентное мышление, т. е. является соединением различных предметных областей, таких как математика, информатика, физика и технология. В процессе создания робота учащемуся необходимо делать математические вычисления, знать физические процессы, чтобы понимать, какой принцип используется при работе датчиков, уметь применять технологические приёмы в конструировании робота и программировать его информационный код.

Цель программы: ознакомление с основами конструирования и программирования учебных роботов.

Задачи:

Обучающие (предметные):

- развитие инновационной творческой деятельности обучающихся на занятиях по конструированию и робототехнике;
- развитие сформированных универсальных учебных действий через создание на занятиях учебных ситуаций, постановку проблемных задач, требующих выбора, обоснования и создания определенной модели конструкции, написания алгоритма действий робота с помощью пиктограмм графического языка;
- формирование представлений о социальных и этических аспектах научно-технического прогресса;

Развивающие(метапредметные):

- развитие навыков взаимной оценки;
- развитие навыков рефлексии, готовность к самообразованию и личностному самоопределению;
- формирование представления о мире профессий, связанных с робототехникой, и требованиях, предъявляемых такими профессиями, как инженер, механик, конструктор, архитектор, программист, инженер-конструктор по робототехнике.

Воспитательные (личностные):

- содействовать социальной адаптации обучающихся в современном обществе, проявлению лидерских качеств;
- воспитывать ответственность, трудолюбие, целеустремленность и организованность.

- формирование навыков коммуникативной культуры, позитивного взаимодействия и сотрудничества;
- формирование высокой социальной активности;
- формирование навыков работы с информацией;
- воспитание патриотизма;
- формирование навыков применения полученной информации для самостоятельной аналитической и творческой деятельности;
- формирование умений и навыков, обеспечивающих успешную самореализацию в жизни, обществе, профессии.

Уровень сложности – базовый.

Направление программы. техническое

Дополнительная образовательная программа «Лига роботов» относится к технической направленности.

Категория учащихся. Программа реализуется для учащихся в возрасте 5-6 классов.

Срок и объем освоения: 1 год, 70 часов. 2022-2023 учебный год

Форма обучения: Очная.

Формы и режим занятий. Форма проведения занятий – групповая, индивидуальная, индивидуально-групповая. При формировании групп учитываются возрастные и индивидуальные особенности. Занятия проводятся 1 раз в неделю по 2 часа.

Планируемые результаты.

Обучающие (предметные):

- знание комплекса теоретических знаний, основ робототехники;
- осознание роли техники в процессе развития общества, понимание экологических последствий развития производства, транспорта;
- владение методами исследовательской и проектной деятельности;
- владение научной терминологией, методами и приёмами конструирования, моделирования и роботостроения;
- умение устанавливать взаимосвязь с разными предметными областями (математика, физика, природоведение, биология, анатомия, информатика и др.) для решения задач по робототехнике;
- владение ИКТ-компетенциями при работе с информацией.
- владение навыками работы с интерфейсом и основными опциями компьютерных программ;
- владение приемами работы с электронными файлами (сохранение, редактирование, запись, копирование);
- освоение приемов и навыков создания медийных продуктов, повышение грамотности в области ИКТ;
- освоение приёмов и методов практической работы на компьютере в основных файловых и офисных редакторах;

Развивающие (метапредметные):

- сформированы навыки инновационного, критического мышления;
- сформированы навыки позитивного, творческого мышления;
- сформированы нравственные качества личности, самостоятельность и ответственность;
- сформирован познавательный интерес к конструированию и освоению современных технологий в инженерии и робототехнике;

- сформированы навыки, обеспечивающие социальное становление личности.

Воспитательные (личностные):

- сформированы навыки коммуникативной культуры, позитивного взаимодействия и сотрудничества;
- сформированы положительные установки на творческую деятельность как важнейший элемент общей культуры;
- сформирована информационная грамотность;
- сформирована гибкость, адаптивность, инициативность, самодисциплина;
- сформирована способность к технологическим, организационным и социальным инновациям;
- сформированы навыки работы с информацией;

Содержание.

Введение 1 ч.

Теория-1ч. Техника безопасности на занятии. Введение в Робототехнику. Области использования роботов. Поколения роботов. История развития робототехники. Применение роботов. Развитие образовательной робототехники в Алтайском крае. Цели и задачи курса.

Конструктор LEGO Mindstorms EV3. 1 ч.

Теория-1ч.

Описание конструкторов LEGO Mindstorms EV3, ресурсный набор. Правила работы с набором. Особенности сборочных инструкций.

Конструкторы LEGO Mindstorms EV3, ресурсный набор. 2 ч.

Практика-2ч.

Практическое знакомство с набором LEGO Mindstorms EV3. Основные детали конструктора и его возможности.

Микрокомпьютер. 2 ч.

Теория-2ч.

Микропроцессор EV3. Краткое описание устройства, принципов функционирования. Знакомство с интерфейсом.

Датчики. 4 ч.

Теория-3ч.

Знакомство с датчиками из набора LEGO Mindstorms EV3. Назначение датчиков. В наборе LEGO Mindstorms EV3 есть четыре вида датчиков: датчик касания, датчик цвета (освещенности), ультразвуковой датчик, датчик гироскоп.

Практика-1ч.

Практическое применение полученных знаний о датчиках.

Сервомотор EV3. 4 ч.

Теория-3ч.

Знакомство с сервомоторами из набора LEGO Mindstorms EV3. Краткое описание устройства, принципов функционирования. Варианты использования. Виды механических узлов построенных на основе сервомоторов.

Практика-1ч.

Практическое применение полученных знаний о сервомоторах.

Программное обеспечение LEGO Mindstorms EV3. 1 ч.

Практика-1ч. Установка программного обеспечения. Системные требования. Интерфейс. Самоучитель.

Основы программирования EV3. 2 ч.

Теория-2ч.

Программирование. Панель инструментов. Палитра команд. Меню. Рабочее поле. Окно подсказок. Панель конфигурации. Выгрузка и загрузка микропрограмм.

Первый робот и первая программа. 4 ч.

Практика-4ч.

Подключение сервомоторов и датчиков. Сборка первой учебной модели. Первые простые программы. Передача и запуск программ. Пульт управления роботом. Тестирование робота.

Движения и повороты. 6 ч.

Теория-4ч.

Движение вперёд. Создание кода управляющей программы для прямолинейного движения вперёд. Настройка блока движения на заданное расстояние и заданное время. Настройка направления движения.

Поворот и разворот. Варианты различных комбинаций мощности моторов робота для выполнения поворота или разворота. Выполнение последовательности движений. Алгоритм точного движения на повороте.

Практика-2ч.

Встроенное программное обеспечение («прошивка»). Загрузка программы. Загрузка управляющего кода в робота. Движение вперёд. Загрузка «прошивки» в блок EV3. Создание кода управляющей программы для прямолинейного движения вперёд. Настройка блока движения на заданное расстояние и заданное время. Настройка направления движения.

Воспроизведение звуков и управление звуком. 4 ч.

Теория-3ч.

Принцип работы и приёмы управления звуковыми сигналами в LEGO Mindstorms EV3. Звуки Lego EV3, Блок «Звук», Режим «Воспроизвести файл», Звуковые файлы LEGO.

Практика-1ч. Практическое применение полученных знаний о воспроизведении и управлении звуком.

Движение робота с ультразвуковым датчиком и датчиком касания. 4 ч.

Теория-2ч.

Принцип работы и приёмы управления ультразвуковым датчиком и датчиком касания в LEGO Mindstorms EV3.

Практика-2ч. Практическое применение полученных знаний об ультразвуковым датчике и датчике касания.

Обнаружение роботом черной линии и движение вдоль черной линии. 4 ч.

Теория-2ч.

Отслеживание линии. Построение алгоритма отслеживания края линии, используя блоки «Жди темноты» и «Жди света». Движение вдоль линии с одним датчиком. Движение вдоль линии с двумя датчиками света. Алгоритм движения робота с двумя датчиками.

Практика-2ч.

Создание программы движения вдоль линии. Создание оптимального алгоритма, используя условие (Если-Иначе, if-else). Создание программы с более эффективным алгоритмом для движения по линии. Преодоление перекрёстков и сложных поворотов становится возможным

для робота. Отслеживание линии. Использование датчика оборотов для движения робота на заданное расстояние.

Проект «Tribot». 6 ч.

Практика-6ч.

В ходе выполнения данного проектного задания ученики выполнят проектирование, сборку, отладку, программирование и финальное испытание робота («Tribot» - робот на трёх колёсах, одно из которых используется лишь как точка опоры).

Проект «Shooterbot». 4 ч.

Практика-4ч.

В ходе выполнения данного проектного задания ученики выполнят проектирование, сборку, отладку, программирование и финальное испытание робота («Shooterbot» - робот стреляющий шариками).

Проект «Color Sorter». 5 ч.

Практика-5ч.

В ходе выполнения данного проектного задания ученики выполнят проектирование, сборку, отладку, программирование и финальное испытание робота («Color Sorter» - робот, который может сортировать предметы по цветам).

Проект «Robogator». 4 ч.

Практика-4ч.

В ходе выполнения данного проектного задания ученики выполнят проектирование, сборку, отладку, программирование и финальное испытание робота («Robogator» - робот эмитирующий вид и поведение аллигатора).

Решение олимпиадных заданий. 10 ч.

Практика-10ч.

Решение олимпиадных задач. Подготовка, программирование и испытание роботов в соревнованиях. Участие в краевых мероприятиях, олимпиадах по робототехнике.

Учебно-тематический план на учебный год.

		Количество часов					
№ п/п	Темы	Всего	Всего		Формы аттестации контроля		
1	Техника безопасности на занятии. Введение в курс «Образовательная робототехника». Что такое робот? (<i>Лекция</i>)	1	1	-	Педагогическое Наблюдение.		
2	Робот LEGO Mindstorms EV3 (Презентация)	1	1	1	Педагогическое Наблюдение.		

3	Конструкторы LEGO Mindstorms EV3, ресурсный набор. (Практическое занятие)	2	-	2	Вопросы по освоению терминологии. Знание терминологии.
4	Микрокомпьютер (Лекция)	2	2	-	Педагогическое Наблюдение.
5	Датчики (Лекция, практическая работа)	4	3	1	Педагогическое Наблюдение.
6	Сервомотор EV3 (Лекция, практическая работа)	4	3	1	Педагогическое Наблюдение.
7	Программное обеспечение LEGO Mindstorms EV3 (Практическое занятие)	1	-	1	Вопросы по освоению терминологии. Знание терминологии.
8	Основы программирования EV3 (Лекция)	2	2	-	Педагогическое Наблюдение.
9	Первый робот и первая программа (Практическое занятие)	4	-	4	Вопросы по освоению терминологии. Знание терминологии.
10	Движения и повороты (Лекция, практическая работа)	6	4	2	Педагогическое Наблюдение.
11	Воспроизведение звуков и управление звуком (Лекция, практическая работа)	4	3	1	Педагогическое Наблюдение.
12	Движение робота с ультразвуковым датчиком и датчиком касания (Лекция, практическая работа)	4	2	2	Вопросы по освоению терминологии. Знание терминологии.
13	Обнаружение роботом черной линии и движение вдоль черной линии (Лекция, практическая работа)	4	2	2	Вопросы по освоению терминологии.
					Знание терминологии.

14	Проект «Tribot» . Программирование и функционирование робота (Практическое занятие)	6	-	6	Вопросы по освоению терминологии. Знание терминологии.
15	Проект «Shooterbot». Программирование и функционирование робота (Практическое занятие)	4	-	4	Вопросы по освоению терминологии. Знание терминологии.
16	Проект «Color Sorter» . Программирование и функционирование робота (Практическое занятие)	5	-	5	Вопросы по освоению терминологии. Знание терминологии.
17	Проект «Robogator» . Программирование и функционирование робота (Практическое занятие)	4	-	4	Вопросы по освоению терминологии. Знание терминологии.
18	Решение олимпиадных заданий Итого	12 70	23	12	Вопросы по освоению терминологии. Знание терминологии.
				•	

№ урока	Колво	Тема	Формы контроля	Д	Ц ата
п/п	часов			план	факт
1	1	Техника безопасности на занятии. Введение в курс «Образовательная робототехника». Что такое робот? (Лекция)	Беседы, педагогическое наблюдение		
2	1	Робот LEGO Mindstorms EV3 (Презентация)	Текущий контроль (беседы, педагогическое наблюдение)		
3-4	2	Конструкторы			
3-0	2	тикрокомпьютер (лекция)			
7-10	4	Датчики (Лекция, практическая работа)	Текущий контроль (беседы, педагогическое наблюдение; выполнение практических заданий.		
11-14	4	Сервомотор EV3 (Лекция, практическая работа)			
15	1	Программное обеспечение LEGO Mindstorms EV3 (Практическое занятие)	Текущий контроль (беседы, педагогиче		
16-17	2	Основы программирования EV3 (<i>Лекция</i>)	Промежуточный контроль (конкурсы, зачеты) Беседы, педагогическое наблюдение		
18-21	4	Первый робот и первая программа (Практическое занятие)	Беседы, педагогическое наблюдение		
22-27	6	Движения и повороты (Лекция, практическая работа)			

28-31	4	Воспроизведение звуков и	Беседы,
		управление звуком	педагогическое
		(Лекция, практическая работа)	наблюдение
32-35	4	Движение робота с ультразвуковым	nuomegemie
02 00	·	датчиком и	
		датчиком касания	
		(Лекция, практическая работа)	
36-39	4	Обнаружение роботом черной	
		линии и движение	
		вдоль черной линии	
		(Лекция, практическая работа)	
40-45	6	, , , ,	Промежуточный
			контроль
		Проект «Tribot».	(конкурсы,
		Программирование и	зачеты)
		функционирование робота	Беседы,
		(Практическое занятие)	педагогическое
			наблюдение
46-49	4	Проект «Shooterbot».	
		Программирование и	Беседы,
		функционирование робота	педагогическое
		(Практическое занятие)	наблюдение
50-54	5	Проект «Color Sorter».	
		Программирование и	
		функционирование робота	
		(Практическое занятие)	
		(приктическое запитие)	
55-58	4	Проект «Robogator»	Беседы,
	'	. Программирование и	педагогическое
		функционирование робота	наблюдение
		(Практическое занятие)	паолюдение
		(приктическое зинятие)	
59-70	12	Решение олимпиадных заданий	Беседы,
		учения от применя выдания	педагогическое
			Наблюдение
			пиомодение

Материально-технические условия.

Для эффективной организации учебного процесса требуется наличие:

Дидактическое обеспечение:

- электронные задания;
- раздаточный материал по темам модуля в электронном или печатном виде.

Техническое обеспечение:

• Класс ПЭВМ с характеристиками, не уступающими Pentium 4, объёмом оперативной памяти от 2 Гб, дисковой памяти – не менее 200 Гб. Количество компьютеров – не менее 10–12 штук, по одному компьютеру на каждого или на группу из двух обучающихся.

- Для ведения образовательного процесса необходимо использование проекционного оборудования.
- Кабинет для конструирования и занятий робототехникой, который необходимо часто проветривать во время десятиминутных перерывов между занятиями и один раз в день проводить сквозное проветривание в течение 15 минут;
- Наборы конструкторов LEGO EV3, ТРИК, ЗНАТОК, конструктор металлических деталей;
- книга для педагога;
- рабочие бланки для обучающихся;
- презентации к занятиям; Программное обеспечение:
- LEGO MINDSTORMS EV3

Формы текущего контроля.

Φοριιοί πεκγιήτεο κοππροίου						
Формы контроля	Текущий	Промежуточный	Итоговый			
Периодичность	постоянно	1-2 раза в год	По окончании программы			
Формы выявления результата	Беседы, педагогическое наблюдение; учет выполнения практических заданий;	Открытые уроки, показательные демонстрации роботов, участие в районных конкурсах	Защита проектов, участие в олимпиадах.			
Формы фиксации результата	Учёт текущей успеваемости в журнале учета работы педагога. Бланки «Наблюдение»;	Оценки в журнале учета работы педагога. Бланки «Наблюдение» Творческие показатели (мониторинг). Карта самооценки учащимися и оценки педагогом компетентности учащегося	Защита проектов, участие в олимпиадах.			

Формы предъявления результата	Презентация, демонстрация собранных механизмов и роботов, ответы на вопросы педагога	Показательные демонстрации роботов, конкурсы.	Защита проектов, результаты участия в олимпиадах. Итоговая анкета
-------------------------------------	--	---	---

Бланки «Наблюдение»

Наблюдение проводится в течение учебного года. Помогает увидеть возникшие проблемы во взаимоотношениях ученик — ученик, ученик — учитель. Проводится с помощью дневника наблюдений.

Параметры	Высокий (А)	Средний (Б)	Низкий (В)
Активность включения в образовательный процесс			
Интерес к занятиям в объединении			
Общение с воспитанниками объединения			
Общение с педагогом на занятии			

Параметры наблюдения за учащимися:

- 1.Активность включения в образовательный процесс:
- а) полностью включен;
- б) частично;
- в) не включён.
- 2.Интерес к занятиям:
- а) очень заинтересован;
- б) заинтересован в достаточной степени;
- в) не заинтересован.
- 3. Общение с воспитанниками объединения:
- а) общается со всеми;
- б) общается только с некоторыми воспитанниками;
- в) почти ни с кем не общается.
- 4.Общение с педагогом на занятии:
- а) хороший контакт;
- б) зависит от настроения воспитанника;
- в) не идёт на контакт.

Матрицы промежуточного контроля Творческий показатель

(учёт результативности участия в конкурсах различного уровня официального статуса, один раз в год)

Группа ____

Nº							
			Районный				
	ФИ учащегося		<u>y</u>	рове	НЬ		
	J (1			II			
		I	II	l	Д	уч	
1.							
2.							
3.							

Условные обозначения результата участия в конкурсах:

I – первое место

II - второе место

III - третье место

Д –дипломант

Уч – сертификат участника

Карта самооценки учащимся и оценки педагогом компетентности учащегося

3446	ркни соответствующую цифру (1 – самая низка:	я оценка	a, 3 – Car	тая высс	кая)	1
1.	Освоил теоретический материал по разделам и темам программы (могу ответить на вопросы педагога)		2	3	4	5
2.		1	2	3	4	5
	Знаю специальные термины, используемые на занятиях					
3.	Научился использовать полученные на занятиях знания в практической деятельности	1	2	3	4	5
4.	Умею выполнять практические задания (упражнения, задачи, опыты и т.д.),	1	2	3	4	5
	которые дает педагог					
5.	Научился самостоятельно выполнять творческие задания	1	2	3	4	5

6.	Умею воплощать свои творческие замыслы	1	2	3	4	5
7.	Могу научить других тому, чему научился сам на занятиях	1	2	3	4	5
8.	Научился сотрудничать с ребятами в решении поставленных задач	1	2	3	4	5
9.	Научился получать информацию из различных источников	1	2	3	4	5
10.	Мои достижения в результате занятий	1	2	3	4	5

Процедура проведения: учащимся предлагается обвести цифры, соответствующие его представлениям по каждому утверждению. После сбора анкет в свободных ячейках педагог выставляет свои баллы по каждому утверждению. Далее рассчитываются средние значения, и делается вывод о приобретении учащимися различного опыта. Педагог составляет сводную таблицу результатов по группе, пишет аналитическую справку. Обработка результатов:

- пункты 1,2,9 опыт освоения теоретической информации;
- пункты 3, 4 опыт практической деятельности;
- пункты 5, 6 опыт творчества; пункты 7, 8 опыт коммуникации (сотрудничества).

Анкета

Оценка педагогом запланированных результатов освоения дополнительной общеразвивающей программы

(итоговый контроль по завершению программы)

№	Вопросы	Мнение педагога
1.	Освоил теоретический материал по разделам и темам программы	1 2 3 4 5
	Знает, понимает и использует в разговоре специальные термины, используемые на занятиях	1 2 3 4 5

3.	Научился использовать полученные на занятиях знания в практической деятельности: может определить цель предполагаемой работы, спланировать ход ее выполнения, спрогнозировать и оценить результат	1 2 3 4 5
4.	Умеет выполнять практические задания с помощью алгоритма (упражнения, задачи), которые дает педагог:	1 2 3 4 5
5.	Научился самостоятельно выполнять творческие задания, продумывать действия при решении задач творческого и поискового характера	12345
6.	Умеет воплощать свои творческие замыслы. Понимает ради чего, какой смысл, вкладывается в замысел предполагаемой работы	1 2 3 4 5
7.	Может научить других тому, чему научился сам на занятиях: понимает, чему хочет научить, какой будет результат и как его достичь. Может свои идеи сформулировать другим. Может отрефлексировать после выполнения работы	12345
8.	Научился сотрудничать с ребятами в решении поставленных задач: может обсуждать с ребятами пути решения учебных задач; искать информацию; готов к сотрудничеству; умеет грамотно в соответствии с грамматическими и синтаксическими нормами родного языка выражать свои мысли	12345
9.	Моет найти и выделить необходимую информацию с помощью разных источников: книг, компьютерных средств и пр.	1 2 3 4 5
10.	Научился сотрудничать со взрослыми в решении поставленных задач: может обсуждать со взрослыми пути решения учебных задач; участвовать в распределении обязанностей; выполнять поручение за контролем выполнения поставленных задач, обсуждать на основе сотрудничества пути и способы решения, высказывать корректно свое мнение	12345
11.	Может ответить на вопросы «Что дают занятия, полученные знания, в чем ценность достигнутого для себя, для семьи, общества?»	12345

Процедура проведения: Педагог выставляет свои баллы по каждому утверждению. Составляет сводную таблицу результатов по группе, пишет аналитическую справку. Обработка результатов:

- Пункты 1, 2, 4 предметный результат
- Пункты 3, 7, метапредметный (регулятивный) результат
- Пункты 5, 9 метапредметный (познавательный) результат
- Пункты 8, 10 метапредметный (коммуникативный) результат Пункты 6, 11 личностный результат.

ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

Сферу Интернет (INTERNET) как информационно-коммуникативный ресурс можно рассматривать как универсальный информационно-образовательный ресурс, в этом случае для субъекта образования сфера Интернет становится ресурсом образования и самообразования, духовного и культурного развития человека.

Поскольку данный ресурс объединяет постоянно расширяемое множество информационных объектов, учебных, методических ресурсов, ИОР, ЭОР и многообразие связей между ними, то эти ресурсы могут быть использованы как совершенно новая по форме и содержанию платформа для более интенсивного и интересного обучения.

Список литературы для педагогов

- 1. Постановление Главного государственного санитарного врача РФ от 4 июля 2014 г. № 41 «Об утверждении СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей».
- 2. Примерные требования к содержанию и оформлению образовательных программ дополнительного образования детей (письмо Министерства образования РФ от 11.12.2006 № 06-1844).
- 3. Белиовский Н. А., Белиовская Л. Г. Использование LEGO-роботов в инженерных проектах школьников. Отраслевой подход. М.: ДМК-пресс, 2015.
- 4. Злаказов А., Горшков Г., Шевалдина С. Уроки ЛЕГО-конструирования в школе. М.: БИНОМ, 2011.
- 5. Копосов Д. Г. Первый шаг в робототехнику. Практикум для 5–6 классов. М.: БИНОМ, 2014.
- 6. Справочное пособие к программному обеспечению Robolab 2.9.4. М.: ИНТ.
- 7. Сухомлинский В. Л. Воспитание коллектива. М.: Просвещение, 1989.
- 8. Филиппов С. А. Робототехника для детей и родителей. 3-е изд. СПб.: Наука, 2014.
- 9. Книга «Первый шаг в робототехнику», Д.Г. Копосов.
- 10. Руководство «ПервоРобот. Введение в робототехнику»
- 11. LEGO MINDSTORMS EV3 Software. Программное обеспечение для mindstorms EV3.

Список литературы для обучающихся

- 1. Клаузен Петер. Компьютеры и роботы. М.: Мир книги, 2006.
- 2. Макаров И. М., Топчеев Ю. И. Робототехника. История и перспективы. М.: Наука, Издво МАИ, 2003.
- 3. Филиппов С. А. Робототехника для детей и родителей. СПб.: Наука, 2014

Интернет источники

1. Интернет – pecypc http://wikirobokomp.ru.

Сообщество увлеченных робототехникой.

- 2. Интернет ресурс http://www.mindstorms.su. Техническая поддержка для роботов.
- 3. Интернет ресурс http://www.nxtprograms.com. Современные модели роботов.
- 4. Интернет ресурс http://www.prorobot.ru. Курсы робототехники и LEGОконструирования в школе.
- 5. Russian software developer network // Русское сообщество разработчиков программного обеспечения [Электронный ресурс]. Режим доступа: http://nnxt.blogspot.ru/

- 6. Каталог программ [Электронный ресурс]. Режим доступа: http://www.legoengineering.com/category/support/buildinginstructions/, http://nnxt.blogspot.ru/search/label/
- 7. RoboLab developer network // Сообщество разработчиков RoboLab [Электронный ресурс]. Режим доступа: http://www.legoengineering.com/
- 8. Сообщество разработчиков ТРИК [Электронный ресурс]. Режим доступа: http://blog.trikset.com/